Team Final Approach 20F12: A2 Aero Micro

Concept Generation and Evaluation

Tyler Darnell - Project Manager Colton Farrar - Documents Manager Thomas O'Brien - Budget Liaison Zachary Kayser - Client Contact Daniel Varner - Website Developer

Project Description

- SAE Aero Micro Competition: Design and construct a remote controlled airplane that is able to have a sustained flight while carrying the lightest aircraft weight possible.
- Teams are scored on the raw weight of the airplane and the weight of the payload it is able to carry.
- Restrictions include being less than 10 lbs. and the disassembled plane fitting within the specified-volume competition container (12.125 in X 3.625 in X 13.875 in).

Daniel, 10/13/2020 Aero Micro - Team 20F12 - 2

Project Description – Black Box Model

- Figure 2 shows a simple black box model for a flying airplane.
- Important Inputs: Power, Human Force (hand launching), Plane Components, and signals to control speed, direction.
- Important Outputs: Full RC Plane, Movement, and Energy Outputs (heat, noise, propellor rotation).
- Material inputs helped determine important components to evaluate.

Figure 2: Black Box Model of Flying Airplane

Project Description – Functional Decomposition

- Figure 3 shows simple Functional Model of Design
- All Material components combine to create a flying plane.
- Helped to show how each component interacts.

Figure 3: Functional Decomposition of Flying Airplane

Tyler, 10/13/2020 Aero Micro - Team 20F12 - 4

Concept Generation

- Concepts were generated by examining the competition/engineering requirements. If the concept met all requirements, research was done through online forums and the Flagstaff Flyers.
- Visited the Flagstaff Flyers airfield to see hands-on RC airplanes in order to generate our own concepts that are similar to their proven ones.
- Preformed State of the Art reviews of RC airplanes and full size aircraft to understand current proven techniques and how we can apply ideas to our own.

Colton, 10/13/2020 Aero Micro - Team 20F12 - 5

Concept Generation – Considered Designs

Figure 4: Conventional Aircraft [2]

Figure 5: Flying Wing [3]

Figure 6: Unique Design [4]

- Conventional is proven and simple, but there is very little creativity.
- Flying wing has very simple manufacturing, but it lacks control and stability.
- Unique allows for extreme creativity, but there is a high risk the design doesn't fly properly.

Zach, 10/13/2020 Aero Micro - Team 20F12 - 6

Concept Evaluation – Airfoil

- Four Main Classes of Airfoil: Symmetrical, Semi-Symmetrical, Flat Bottomed, and Undercambered
- Decision Matrix used to determine best airfoil class:
 - Maximum Lift is the highest weighted criteria, followed by maneuverability.
 - Flat Bottomed and Under-Cambered airfoils are the highest weighted total in decision matrix, since they provide the best lift possible.

Airfoil Selection Decision Matrix											
Criteria	Weight	Symmetrical	Semi-Symmetrical	Flat Bottomed	Undercambered						
Maximum Lift	0.5	1	2	4	5						
Minimal Drag	0.1	3	3	2	1						
Maneuverability	0.3	4	4	3	1						
Ease of Creation	0.1	3	3	4	3						
Total:	1	11	12	13	10						
Weighted Total		2.3	2.8	3.5	3.2						

Table 1: Decision Matrix of Airfoil Selection

Tyler, 10/13/2020 ero Micro - Team 20F12 - 7.

Concept Evaluation – Airfoil

- Two Airfoils to Consider: Flat Bottomed and Undercambered
- Data shows undercambered airfoils are provide much more lift, but what do the experts think?
- Flagstaff Flyers (RC group in Flagstaff) all recommend using flat bottomed airfoils, since they provide much more mobility.
- The Clark Y [5] flat bottomed airfoil will be used since it provides strong lift and maneuvers well enough that the team can actually get it in the air.

Figure 7: CAD Model of Clark Y Airfoil

Tyler, 10/13/2020 Aero Micro - Team 20F12 - 8

Concept Evaluation – Tails

		Cor	wentional	T-Tail		Cr	uciform		Dual	Boom		
Criteria	Weight	Rating	Weight Score									
Ease of Manufacturing	0.25	5	1.25	4	1	3	0.75	2	0.5	1	0.25	
Weight	0.1	4	0.4	4	0.4	4	0.4	3	0.3	2	0.2	
Power Saving (less servos)	0.25	5	1.25	5	1.25	3	0.75	3	0.75	3	0.75	
Drag Efficiencies	0.15	3	0.45	4	0.6	3	0.45	5	0.75	3	0.45	
Stability	0.25	3	0.75	3	0.75	2	0.5	5	1.25	5	1.25	
Total			4.1		4		2.85		3.55		2.9	

Table 2: Decision Matrix of Airplane Tail Designs (Designs Found in Appendix A)

- Each design meets all competition/engineering requirements. Weighted decision matrix used to narrow options.
- Conventional and T-Tail are the only two options the team moved forward with. Conventional tails have a slightly easier manufacturing process due to the placement of the horizontal stabilizer.

Concept Evaluation – Landing Gear

- The two primary configurations being evaluated are tricycle and tail dragger.
- Both configurations are viable options for the competition.
- Taildragger is more cost effective and lighter.
- Tricycle ensures a safer landing.

Figure 10: Landing Gear Configurations [7]

Concepts	Т	ricycle	Tail Dragger					
Criteria	Weight	Rating	Weight Score	Rating	Weight Score			
Landing Preformance	0.3	5	1.5	2	0.6			
Cost	0.15	4	0.6	5	0.75			
Weight	0.25	2	0.5	3	0.75			
Size	0.3	3	0.9	4	1.2			
Total	14	3.5	14	3.3				

Table 3: Decision Matrix of Landing Gear Configurations

Thomas, 10/13/2020 Aero Micro - Team 20F12 - 11

Concept Evaluation – Landing Gear

Figure 11: Front Portion of The Tricycle [8]

Figure 12: Rear Portion of The Tricycle [9]

Thomas, 10/13/2020 Aero Micro - Team 20F12 - 12

Concept Evaluation – Propulsion

The objective of this competition is to have a lightweight plane that can fly with a weighted payload, therefore a motor and propeller combination must be chosen to generate sufficient thrust for our craft.

- Large diameter propellers will generate greater thrust and allow the craft to fly at slower speeds, and will therefore be easier to control and land..
- A high thrust-to-weight ratio is highly desired as it will allow for more payload to be .
- High propeller diameter will increase thrust, but may also overload the motor and battery.
- Motor and propeller combination may change based on alterations to weight and dimensions.

Propeller Static Thrust: 1903 q 67.1 oz Revolutions*: 10329 rpm Stall Thrust: - g - OZ avail.Thrust @ 72.5 km/h: 1022 g avail.Thrust @ 45 mph: 36 07 Pitch Speed: 94 km/h 58 mph 544 km/h Tip Speed: 338 mph specific Thrust: 4.22 g/W 0.15 oz/W

Figure 13: Thrust Generated from Scorpion 2520 Motor w/ 11" Dia. 6" Pitch Propeller[10]

Concept Evaluation – Fuselage

- The Fuselage is the core of the plane, and must hold up to the stresses of flight.
 - ABS plastic yield strength: 25 MPa [11]
 - Balsa Wood yield strength: 1 MPa [12]
- The Flagstaff Flyers recommend a balsa wood fuselage to reduce weight

Concer	ots	3-d P	rinted	Balsa Wood					
Criteria	Weight	Rating	Wight Score	Rating	Weight Score				
Weight	0.4	1	0.4	4	1.6				
Yeild Strength	0.3	2	0.6	1	0.3				
Reproduciblitity	0.2	3	0.6	2	0.4				
Cost	0.1	4	0.4	4	0.4				
Tota	1	10	2	11	2.7				

Table 4: Decision Matrix of Fuselage Material

Zach, 10/13/2020 Aero Micro - Team 20F12 - 14

Concept Evaluation – Fuselage

Figure 14: CAD Model of Fuselage (Isometric View)

Figure 15: CAD Model of Fuselage (Top View)

- The Fuselage is the core of our design.
 - Goal: Minimize volume and weight
 - Contains: Motor, ESC, Receiver, and LiPo Battery

Zach, 10/13/2020 Aero Micro - Team 20F12 - 15

Concept Evaluation – Tentative Final Design

- The Tentative Final Design shown in Figure 16 is a combination of the optimal designs from the concept evaluations performed by each team member.
- In theory, this assembly of components should fly and meet most of our engineering and customer requirements from our QFD (Appendix B).
- This tentative design is very likely to change as the team continues their work.

Figure 16: CAD Model of Tentative Final Design

Colton, 10/13/2020 Aero Micro - Team 20F12 -16

Budget Planning

- The current material budget is setup to accommodate for crashing during testing.
- The cost to enter competition is \$1100.
- Factoring that into the budget the current total project cost is approximately \$2100.

Table 5: Breakdown of the Material Costs for the Project [13]

Materials									
Components	Quanitity	Price	Cost						
Motor	1	30	30						
Prop	10	5	50						
Battery	1	30	30						
Servos	8	60	480						
Electronic Speed Controller(ESC)	1	25	25						
Controller	1	150	150						
Monokote	1	50	50						
Bass/balsa Wood	1	30	30						
Landing Gear	2	10	20						
		total cost	865						

Conclusion

- The team now has a tentative final design to work with, but there is a lot more work to do.
- The next step will be to prototype our design, and see if the decisions we made result in a flying RC plane.
- Once the team develops a working design, we can continue to make adjustments to the design to increase the weight to payload ratio in order to score better at competition.

Works Cited

[1] "SAE Aero Design West." SAE International. [Online]. Available:

- https://www.sae.org/attend/student-events/sae-aero-design-west/
- [2] L. S. U. , *Louisiana State University*. Accessed: Oct. 12th, 2020. [Online]. Available:
 - https://www.lsu.edu/eng/news/2018/05/lsuaerofourth.php.
- [3] "Micro Aircraft Competition Design · Neil Pomerleau," Neil Pomerleau. Accessed: Oct. 12th, 2020.
 [Online]. Available: https://www.neilpomerleau.com/posts/micro-aircraft-competition-design/.
- [4] clc3qy, "Team History," *Miner Aviation*, 29-Apr-2020. Accessed: Oct. 13th, 2020. [Online]. Available: https://mineraviation.mst.edu/team-history/.
- "CLARK-Y 11.7% smoothed," CLARK-Y 11.7% smoothed (clarkysm-il). Accessed: Oct. 12th, 2020.
 [Online].

Available: http://airfoiltools.com/airfoil/details?airfoil=clarkysm-il.

[6] "File:Tail of a conventional aircraft.svg," *File:Tail of a conventional aircraft.svg - Wikimedia Commons*.

Accessed: Oct. 12th, 2020. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Tail_of_a_conventional_aircraft.svg.

- [7] A.Gudmundsson, General Aviation Aircraft Design: Applied Methods and Procedures, Waltham, Ma: Butterworth-Heinemann, 2014, pp. 548-572
- [8] E. Vaidya, "GrabCad Community," GrabCad, 11 May 2019. [Online]. Available: https://grabcad.com/library/landing-gear-47

Works Cited

- [9] M. Kharudin. "Main Landing Gear" GrabCad, 12 Oct. 2020. [Online]. Available: https://grabcad.com/library/main-landing-gear-7
- [10] Motor and Propeller Thrust Values (eCalc.com). [Online]. Available: https://www.ecalc.ch/motorcalc.php?ecalc&lang=en&weight=1361&calc=auw&motornumber=1&warea= 16.77&elevation=2134&airtemp=21&motor=scorpion&type=8|hk-2520-1360&gear=1&propeller=apc_electric&diameter=11&pitch=4.5&blades=2&batteries=lipo_2200mah_-
 - _30/45c&s=3&esc=max_50a&cooling=good (Accessed September 27, 2020)
- [11] L. L. C. Engineers Edge, "ABS Plastic Filament Engineering Information," Engineers Edge -Engineering, Design and Manufacturing Solutions, 18-Dec-2017. Accessed: Oct. 12th, 2020. [Online]. Available: https://www.engineersedge.com/3D_Printing/abs_plastic_filament_engineering_information_14211.ht m.
- [12] Tropical Balsa Wood. Accessed: Oct. 12th, 2020. [Online]. Available: http://www.matweb.com/search/datasheet_print.aspx?matguid=368427cdadb34b10a66b55c264d49c23
- [13] Flite Test Store. Accessed: Oct. 12th, 2020. [Online]. https://store.flitetest.com/?gclid=Cj0KCQjwoJX8BRCZARIsAEWBFMKpKi4lxj1DYaCBPKwcTRPHhKUvFS 4JgjNM9EoaUX1DcNmqlzp2kwwaAqmaEALw_wcB.
- [14] C. Farrar, et al. "Final Design Proposal for SAE Aero Micro", Northern Arizona University, Flagstaff, AZ,

Works Cited

Appendix A: Airplane Tail Designs

Appendix B: QFD

Design Requirements Customer Requirements	Importance	Volume	Assembly Time	Cost	Battery	Material Selection	Packaged Weight	Durability	Range	Flight Control	Ground Control	Radio Control	Identifying Marks	Lift	Thrust	Drag	Fail Safe	Red Arming Plug	Restoration
Assembly time	3	3	9	1	1	3	1	1	1	1	1	3	1	1	1	1	3	9	1
Size of Craft(fits in contianer)	9	9	3	9	1	1	3	1	3	1	1	3	1	1	1	1	1	3	1
Carries a payload	9	3	1	3	3	3	3	1	3	1	1	1	1	9	9	9	1	1	1
Hand Launch	3	1	1	3	3	1	3	3	3	9	3	3	1	3	3	3	1	3	1
Flight Time	9	1	1	9	9	9	9	3	3	3	3	3	1	9	9	9	1	1	1
Technical Importance: Absolu	ute	129	75	201	129	129	147	57	93	75	57	81	33	183	183	183	39	81	33
Technical Importance: Relative		7%	4%	11%	11%	11%	8%	3%	5%	4%	3%	4%	2%	10%	10%	10%	2%	4%	2%
Target Value		557.5	3	1,500	3 & 2200		10		450			2.4		40	20	5			
Units		in^3	min.	\$	cells & mAh		lbs.		ft.			GHz		lbs.	lbs.	lbs.			